Learning-based Knowledge Representation
نویسندگان
چکیده
This paper presents a learning-based representation of knowledge which is at the basis of the family of Disciple learning agents. It introduces a representation for concepts, generalization and specialization rules, different types of generalizations and specializations, and the representation of the main elements of a knowledge base, including partially learned concepts, problems, and rules. Finally, it provides a formal definition of generalization based on substitutions.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملOn the Representation of Bloom's Revised Taxonomy in Interchange Coursebooks
This study intends to evaluate Interchange series (2005), which are still fundamental coursebooks in the EFL curriculum settings, in terms of learning objectives in Bloom’s Revised Taxonomy (2001) to see which levels of Bloom's Revised Taxonomy were more emphasized in these coursebooks. For this purpose, the contents of Interchange textbooks were codified based on a coding scheme designed by th...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملIntroduction to the teachings of the transcendental paradigm in the process of teaching-learning and its critique
The purpose of this study is to study the teachings of the transcendental paradigm in the process of teaching-learning and its critique. In order to achieve the purpose of the research, three methods of conceptual, inference and critical analysis have been used to analyze and critique the foreman paradigm. Findings of the research indicate that meta-text instead of oral text emphasizes written ...
متن کاملNeuron Mathematical Model Representation of Neural Tensor Network for RDF Knowledge Base Completion
In this paper, a state-of-the-art neuron mathematical model of neural tensor network (NTN) is proposed to RDF knowledge base completion problem. One of the difficulties with the parameter of the network is that representation of its neuron mathematical model is not possible. For this reason, a new representation of this network is suggested that solves this difficulty. In the representation, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008